ماتریس های منظم - یکه و ماتریس های کلین

thesis
abstract

مفهوم عنصر منظم - یکه، نخستین بار توسط ارلیچ معرفی گردید. طبق ]13[ عنصر x در حلقه r منظم- یکه است اگر و فقط اگرx=xux که u?u(r). به آسانی می توان بررسی کرد که عنصر x منظم - یکه است اگر و فقط اگر x حاصل ضرب یک عنصر خودتوان در یک عنصر یکه باشد. همانطور که از نامشان پیداست، عنصرهای منظم - یکه، منظم هستند. ارلیچ، یک حلقه را منظم - یکه نامید اگر همه عنصرهای آن منظم - یکه باشند. حلقه هایی از این نوع به طور گسترده در مبحث حلقه های فون نیومن منظم مطالعه می شوند]15، بخش4[. به طور مشابه، عنصرهای کلین در حلقه ها توسط نیکلسون معرفی شدند. در [28] عنصر x از حلقه r کلین نامیده می شود اگرx مجموع یک عنصر خودتوان و یک عنصر یکه در حلقه r باشد و حلقه r کلین است اگر همه عنصرهای r کلین باشند. چنین حلقه هایی مورد علاقه اند زیرا یک زیررده از حلقه های تبادلی در نظریه حلقه های ناجابجایی تشکیل می دهند. رابطه بین کلین بودن و منظم - یکه بودن به نظر نسبتاً دقیق و نزدیک به هم است. نیکلسون این پرسش را مطرح کرد که آیا یک حلقه منظم - یکه، کلین است؟ در [9] یا به طور صحیح تر، کامیلو و خورانا در[7] نشان دادند هر حلقه منظم - یکه، کلین است. این اثبات، پرسش نیکلسون را پاسخ می دهد اما این پاسخ به قدری کلی است که پاسخ این پرسش را نمی دهد که آیا یک عنصر منظم - یکه تنها در حلقه r کلین است. درکل اگر عنصر x?r شکل eu داشته باشد به طوری که e یک عنصر خودتوان و u یک عنصر یکه باشد که با e جابجا شود آنگاه با نوشتن f=1-e خواهیم داشت: x=f+(eu-f) کلین است، ازآنجاییکه f خودتوان است و eu-f یک یکه با معکوس eu¯^1-f (و جابجایی با f). این نشان می دهد که در هر حلقه ای که خودتوان ها مرکزی هستند (حلقه جابجایی، حلقه موضعی یا حلقه کاهش یافته) هر عنصر منظم - یکه، درحقیقت کلین است. به طور کلی تر، در ]29، قضیه 1[ نیکلسون نشان داد که اگر x?r چنان باشد که(n?1) x^n=eu=ue که e=e^2 وu?u(r) آنگاه x کلین است. این قضیه نتیجه می دهد که هر حلقه قویاً ?- منظم کلین است. به ویژه، هر حلقه آرتینی راست (حلقه متناهی) کلین است. نتیجه دیگری از هان و نیکلسون در [18] نشان می دهد که هر ماتریس (متناهی) روی یک حلقه کلین، کلین است. هدف اولیه این تحقیق نشان دادن این است که در یک حلقه ناجابجایی، عنصرهای منظم - یکه، لزوماً کلین نیستند. به طور طبیعی بهترین مکان برای جستجوی مثال هایی برای آن، خانواده انواع مختلف حلقه های ماتریسی روی حلقه جابجایی k است. اولین تلاش، کار با حلقه ماتریس های بالامثلثیt_n (k) روی k مثال مطلوب را به وجود نمی آورد. درحقیقت، می توان نشان داد که عنصرهای منظم - یکه، همیشه در t_n (k) کلین می باشند. از این رو، حلقه های ماتریس کامل m_n (k) مورد بررسی قرار می گیرند. اولین مثال از ماتریس های مثلثی ویژه، ماتریسی به شکل a=(?(a&b@0&0)) (روی حلقه جابجایی مناسبk) است. مسأله با اثبات ضابطه کلی برای کلین بودن a=(?(a&b@0&0))، در حلقهm_2 (k) حل می گردد. از این رو، در این ضابطه، نشان داده می شود (?(1+xy &x^2@0&0)) (مشتق ماتریس کوهن در[12] ) منظم- یکه است اما روی k=k[x,y] برای هر دامنه صحیح k کلین نیست. با محدود کردن ضابطه کلین بودن برای مورد k=z نیز به طور الگوریتمی روش خیلی ساده برای تصمیم گیری کلین بودن ماتریس هایی به شکل (?(a&b@0&0)) روی حلقه z به دست می آید. به ویژه می بینیم انتخاب های (a,b)=(2,5),(13,5),(12,7),… کلین نیستند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

ماتریس های آدامار منظم و ماتریس های وزنی

برای هر عدد صحیح مثبت m و به ازای w=(q^(m+1)-1)/(q-1) می توان یک (vw,kq^m,?q^m)- طرح متقارن ساخت. اگر h یک ماتریس آدامار منظم با جمع سطری 2h، m یک عدد صحیح مثبت و q=?(2h-1)?^2 توانی از یک عدد اول باشد در این صورت با استفاده از bgw((q^(m+1)-1)/(q-1),q^m,q^m-q^(m-1)) می توان طرح متقارن با پارامترهای ((4h^2 (q^(m+1)-1))/(q-1),(2h^2-h) q^m,(h^2-h) q^m) ساخت هرگاه h در شرایط خاصی صدق کند. چنین شرایط...

15 صفحه اول

حلقه های ماتریس مثلثی قویاً کلین روی حلقه موضعی

فرض کنید یک حلقه است عنصر ? a را قویاً کلین نامند هرگاه a = + که و به ترتیب عنصر خودتوان و یکه حلقه هستند وضمناً = . حلقه را قویاً کلین نامند هرگاه هر عضو آن قویاً کلین باشد. در این تحقیق شرایطی را روی حلقه موضعی مانند بررسی می کنیم که نتیجه می دهند یک حلقه قویاً کلین است.در ضمن نشان می دهیم که این حالت برای حلقه های موضعی جابجایی و بعلاوه تحت شرایطی برای حالت های دیگر از حلقه های موضعی نیز برقرار است

15 صفحه اول

ماتریس های خوش ترکیب ویکه-منظم

یک عضو در حلقه ی r خوش ترکیب (یکه –منظم) نامیده می شود اگر به صورت مجموع (حاصل ضرب ) یک عضو خودتوان ویک عضو یکال باشد. اگر تمام عناصر حلقه r یکه –منظم باشد آن گاه تمام عناصر r خوش ترکیب اند. در این پایان نامه نشان می دهیم که یک عنصر یکه- منظم در حلقه لزوما خوش ترکیب نیست. هم چنین محکی برای خوش ترکیبی ماتریس با سطر اول و وسطر دوم صفر در حلقه ی ماتریس های m2(k) برای هر حلقه تعویض پذیر k به دست می...

ماتریس های تقریباً علامت منظم اکید نامنفرد

در این تحقیق رده ماتریس های تقریباً علامت منظم اکید،که شامل ماتریس های تقریباً جمعاً مثبت اکید می باشد معرفی می شود.یک مشخص سازی برای این ماتریس ها بر حسب مینورهای غیر بدیهی آنها با استفاده از سطرهای متوالی و ستون های متوالی ارائه می شود. به خصوص یک مشخص سازی از ماتریس های تقریباً علامت منظم اکید معین، بر حسب مینورهای تقریباً بدیهی مرزی ارائه می شود.

15 صفحه اول

ساخت ماتریس های نمونه برداری یقینی بر اساس توابع هش

چکیده: ماتریس­های نمونه­برداری نقش اساسی در حسگری فشرده دارند. این مـاتریس­ها به­صـورت تصـادفی و یقینی قابل ساخت هستند. ماتریس­های یقینی به علت اینکه حافظه کم­تری برای ذخیره­سازی نیاز دارند موردتوجه زیادی قرار گرفته­اند. در این مقاله دسته­ای از ماتریس­های حسگری یقینی، با استفاده از توابع هش ساخته می­شوند. برای این منظور ابتدا یک ماتریس کد اولیه ساخته می­شود، سپس با استفاده از ماتریس توابع هش، ی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023